The electrical resistance of an electrical element is the opposition to the passage of an electric current through that element; the inverse quantity is electrical conductance,
the ease at which an electric current passes. Electrical resistance
shares some conceptual parallels with the mechanical notion of friction. The SI unit of electrical resistance is the ohm (Ω), while electrical conductance is measured in siemens (S).
An object of uniform cross section has a resistance proportional to its resistivity and length and inversely proportional to its cross-sectional area. All materials show some resistance, except for superconductors, which have a resistance of zero.
The resistance (R) of an object is defined as the ratio of voltage across it to current through it, while the conductance (G) is the inverse:
In other cases, such as a diode or battery, V and I are not directly proportional, or in other words the I–V curve is not a straight line through the origin, and Ohm's law does not hold. In this case, resistance and conductance are less useful concepts, and more difficult to define. The ratio V/I is sometimes still useful, and is referred to as a "chordal resistance" or "static resistance",[1][2] as it corresponds to the inverse slope of a chord between the origin and an I–V curve. In other situations, the derivative dV/dI may be most useful; this is called the "differential resistance".
The voltage drop (i.e., difference in voltage between one side and the other), not the voltage itself, is the driving force pushing current through a resistor. In hydraulics, it is similar: The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it. For example, there may be a large water pressure above the pipe, which tries to push water down through the pipe. But there may be an equally large water pressure below the pipe, which tries to push water back up through the pipe. If these pressures are equal, no water will flow. (In the image at right, the water pressure below the pipe is zero.)
The resistance and conductance of a wire, resistor, or other element is generally determined by two factors: geometry (shape) and materials.
Geometry is important because it is more difficult to push water through a long, narrow pipe than a wide, short pipe. In the same way, a long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire.
Materials are important as well. A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. In a similar way, electrons can flow freely and easily through a copper wire, but cannot as easily flow through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape. The difference between, copper, steel, and rubber is related to their microscopic structure and electron configuration, and is quantified by a property called resistivity.
For ohmic materials, the resistance R and conductance G are defined by:
This formula is not exact: It assumes the current density is totally uniform in the conductor, which is not always true in practical situations. However, this formula still provides a good approximation for long thin conductors such as wires.
Another situation for which this formula is not exact is with alternating current (AC), because the skin effect inhibits current flow near the center of the conductor. Then, the geometrical cross-section is different from the effective cross-section in which current is actually flowing, so the resistance is higher than expected. Similarly, if two conductors are near each other carrying AC current, their resistances will increase due to the proximity effect. At commercial power frequency, these effects are significant for large conductors carrying large currents, such as busbars in an electrical substation,[3] or large power cables carrying more than a few hundred amperes.
Resistivity varies with temperature. In semiconductors, resistivity also changes when light is shining on it. These are discussed below.
Resistance and conductance can still be defined for non-ohmic elements. There are two common definitions:[1][2]
The two definitions are useful in different circumstances. For example, when calculating the I2R energy dissipated by an element (see below), the static resistance should be used. On the other hand, for small-signal modeling analysis of circuits, the differential resistance should be used.
If the V-I graph is not monotonic (i.e. it has a peak or a trough), the differential resistance will be negative for some values of voltage and current. This property is often known as negative differential resistance, sometimes (misleadingly) abbreviated as negative resistance. Examples of such elements include the tunnel diode and Gunn diode. Static resistance is negative only in devices that have an external source of power—for example, a battery or negative impedance converter.
for AC circuits, just as for DC circuits.
The dissipation of electrical energy is often undesired, particularly in the case of transmission losses in power lines. High voltage transmission helps reduce the losses by reducing the current for a given power.
On the other hand, Joule heating is sometimes useful, for example in electric stoves and other electric heaters (also called resistive heaters). As another example, incandescent lamps rely on Joule heating: the filament is heated to such a high temperature that it glows "white hot" with thermal radiation (also called incandescence).
The formula for Joule heating is:
As a consequence, the resistance of wires, resistors, and other components often change with temperature. This effect may be undesired, causing an electronic circuit to malfunction at extreme temperatures. In some cases, however, the effect is put to good use. When temperature-dependent resistance of a component is used purposefully, the component is called a resistance thermometer or thermistor. (A resistance thermometer is made of metal, usually platinum, while a thermistor is made of ceramic or polymer.)
Resistance thermometers and thermistors are generally used in two ways. First, they can be used as thermometers: By measuring the resistance, the temperature of the environment can be inferred. Second, they can be used in conjunction with Joule heating (also called self-heating): If a large current is running through the resistor, the resistor's temperature rises and therefore its resistance changes. Therefore, these components can be used in a circuit-protection role similar to fuses, or for feedback in circuits, or for many other purposes. In general, self-heating can turn a resistor into a nonlinear and hysteretic circuit element. For more details see Thermistor#Self-heating effects.
If the temperature T does not vary too much, a linear approximation is typically used:
The temperature coefficient is typically +3×10−3 K−1 to +6×10−3 K−1 for metals near room temperature. It is usually negative for semiconductors and insulators, with highly variable magnitude.[10]
An object of uniform cross section has a resistance proportional to its resistivity and length and inversely proportional to its cross-sectional area. All materials show some resistance, except for superconductors, which have a resistance of zero.
The resistance (R) of an object is defined as the ratio of voltage across it to current through it, while the conductance (G) is the inverse:
In other cases, such as a diode or battery, V and I are not directly proportional, or in other words the I–V curve is not a straight line through the origin, and Ohm's law does not hold. In this case, resistance and conductance are less useful concepts, and more difficult to define. The ratio V/I is sometimes still useful, and is referred to as a "chordal resistance" or "static resistance",[1][2] as it corresponds to the inverse slope of a chord between the origin and an I–V curve. In other situations, the derivative dV/dI may be most useful; this is called the "differential resistance".
Introduction
In the hydraulic analogy, current flowing through a wire (or resistor) is like water flowing through a pipe, and the voltage drop across the wire is like the pressure drop which pushes water through the pipe. Conductance is proportional to how much flow occurs for a given pressure, and resistance is proportional to how much pressure is required to achieve a given flow. (Conductance and resistance are reciprocals.)The voltage drop (i.e., difference in voltage between one side and the other), not the voltage itself, is the driving force pushing current through a resistor. In hydraulics, it is similar: The pressure difference between two sides of a pipe, not the pressure itself, determines the flow through it. For example, there may be a large water pressure above the pipe, which tries to push water down through the pipe. But there may be an equally large water pressure below the pipe, which tries to push water back up through the pipe. If these pressures are equal, no water will flow. (In the image at right, the water pressure below the pipe is zero.)
The resistance and conductance of a wire, resistor, or other element is generally determined by two factors: geometry (shape) and materials.
Geometry is important because it is more difficult to push water through a long, narrow pipe than a wide, short pipe. In the same way, a long, thin copper wire has higher resistance (lower conductance) than a short, thick copper wire.
Materials are important as well. A pipe filled with hair restricts the flow of water more than a clean pipe of the same shape and size. In a similar way, electrons can flow freely and easily through a copper wire, but cannot as easily flow through a steel wire of the same shape and size, and they essentially cannot flow at all through an insulator like rubber, regardless of its shape. The difference between, copper, steel, and rubber is related to their microscopic structure and electron configuration, and is quantified by a property called resistivity.
Conductors and resistors
Objects such as wires that are designed to have low resistance so that they transfer current with the least loss of electrical energy are called conductors. Objects that are designed to have a specific resistance so that they can dissipate electrical energy or otherwise modify how a circuit behaves are called resistors. Conductors are made of high-conductivity materials such as metals, in particular copper and aluminium. Resistors, on the other hand, are made of a wide variety of materials depending on factors such as the desired resistance, amount of energy that it needs to dissipate, precision, and cost.Ohm's law
Main article: Ohm's law
Ohm's law is an empirical law relating the voltage V across an element to the current I through it:For ohmic materials, the resistance R and conductance G are defined by:
Relation to resistivity and conductivity
Main article: Electrical resistivity and conductivity
The resistance of a given object depends primarily on two factors:
What material it is made of, and its shape. For a given material, the
cross-sectional area is inversely proportional to the resistance; for
example, a thick copper wire has lower resistance than an
otherwise-identical thin copper wire. Also, for a given material, the
resistance is proportional to the length; for example, a long copper
wire has higher resistance than an otherwise-identical short copper
wire. The resistance R and conductance G of a conductor of uniform cross section, therefore, can be computed asThis formula is not exact: It assumes the current density is totally uniform in the conductor, which is not always true in practical situations. However, this formula still provides a good approximation for long thin conductors such as wires.
Another situation for which this formula is not exact is with alternating current (AC), because the skin effect inhibits current flow near the center of the conductor. Then, the geometrical cross-section is different from the effective cross-section in which current is actually flowing, so the resistance is higher than expected. Similarly, if two conductors are near each other carrying AC current, their resistances will increase due to the proximity effect. At commercial power frequency, these effects are significant for large conductors carrying large currents, such as busbars in an electrical substation,[3] or large power cables carrying more than a few hundred amperes.
What determines resistivity?
Main article: Electrical resistivity and conductivity
The resistivity of different materials varies by an enormous amount: For example, the conductivity of teflon is about 1030
times lower than the conductivity of copper. Why is there such a
difference? Loosely speaking, a metal has large numbers of "delocalized"
electrons that are not stuck in any one place, but free to move across
large distances, whereas in an insulator (like teflon), each electron is
tightly bound to a single atom, and a great force is required to pull
it away. Semiconductors lie between these two extremes. More details can be found in the article: Electrical resistivity and conductivity. For the case of electrolyte solutions, see the article: Conductivity (electrolytic).Resistivity varies with temperature. In semiconductors, resistivity also changes when light is shining on it. These are discussed below.
Measuring resistance
Main article: ohmmeter
An instrument for measuring resistance is called an ohmmeter.
Simple ohmmeters cannot measure low resistances accurately because the
resistance of their measuring leads causes a voltage drop that
interferes with the measurement, so more accurate devices use four-terminal sensing.Typical resistances
See also: Electrical resistivities of the elements (data page) and Electrical resistivity and conductivity
Component | Resistance (Ω) |
1 meter of copper wire with 1mm diameter |
0.02[4] |
1 km overhead power line (typical) |
0.03[5] |
AA battery (typical internal resistance) |
0.1[6] |
Incandescent light bulb filament (typical) |
200-1000[7] |
Human body | 1000 to 100,000[8] |
Static and differential resistance
See also: Small-signal model
Many electrical elements, such as diodes and batteries do not satisfy Ohm's law. These are called non-ohmic, and are characterized by an I–V curve which is not a straight line through the origin.Resistance and conductance can still be defined for non-ohmic elements. There are two common definitions:[1][2]
- Rstatic is the static resistance, also called chordal resistance
- Rdifferential is the differential resistance, also called dynamic resistance, incremental resistance, or slope resistance. It is defined as the derivative of the IV relationship.
The two definitions are useful in different circumstances. For example, when calculating the I2R energy dissipated by an element (see below), the static resistance should be used. On the other hand, for small-signal modeling analysis of circuits, the differential resistance should be used.
If the V-I graph is not monotonic (i.e. it has a peak or a trough), the differential resistance will be negative for some values of voltage and current. This property is often known as negative differential resistance, sometimes (misleadingly) abbreviated as negative resistance. Examples of such elements include the tunnel diode and Gunn diode. Static resistance is negative only in devices that have an external source of power—for example, a battery or negative impedance converter.
AC circuits
Impedance and admittance
Main articles: Electrical impedance and Admittance
When an alternating current flows through a circuit, the relation
between current and voltage across a circuit element is characterized
not only by the ratio of their magnitudes, but also the difference in
their phases.
For example, in an ideal resistor, the moment when the voltage reaches
its maximum, the current also reaches its maximum (current and voltage
are oscillating in phase). But for a capacitor or inductor,
the maximum current flow occurs as the voltage passes through zero and
vice-versa (current and voltage are oscillating 90° out of phase, see
image at right). Complex numbers are used to keep track of both the phase and magnitude of current and voltage:- t is time,
- V(t) and I(t) are, respectively, voltage and current as a function of time,
- V0, I0, Z, and Y are complex numbers,
- Z is called impedance,
- Y is called admittance,
- Re indicates real part,
- is the angular frequency of the AC current,
- is the imaginary unit.
for AC circuits, just as for DC circuits.
Frequency dependence of resistance
Another complication of AC circuits is that the resistance and conductance can be frequency-dependent. One reason, mentioned above is the skin effect (and the related proximity effect). Another reason is that the resistivity itself may depend on frequency (see Drude model, deep-level traps, resonant frequency, Kramers–Kronig relations, etc.)Energy dissipation and Joule heating
Main article: Joule heating
Resistors (and other elements with resistance) oppose the flow of
electric current; therefore, electrical energy is required to push
current through the resistance. This electrical energy is dissipated,
heating the resistor in the process. This is called Joule heating (after James Prescott Joule), also called ohmic heating or resistive heating.The dissipation of electrical energy is often undesired, particularly in the case of transmission losses in power lines. High voltage transmission helps reduce the losses by reducing the current for a given power.
On the other hand, Joule heating is sometimes useful, for example in electric stoves and other electric heaters (also called resistive heaters). As another example, incandescent lamps rely on Joule heating: the filament is heated to such a high temperature that it glows "white hot" with thermal radiation (also called incandescence).
The formula for Joule heating is:
Dependence of resistance on other conditions
Temperature dependence
Near room temperature, the resistivity of metals typically increases as temperature is increased, while the resistivity of semiconductors typically decreases as temperature is increased. The resistivity of insulators and electrolytes may increase or decrease depending on the system. For the detailed behavior and explanation, see Electrical resistivity and conductivity.As a consequence, the resistance of wires, resistors, and other components often change with temperature. This effect may be undesired, causing an electronic circuit to malfunction at extreme temperatures. In some cases, however, the effect is put to good use. When temperature-dependent resistance of a component is used purposefully, the component is called a resistance thermometer or thermistor. (A resistance thermometer is made of metal, usually platinum, while a thermistor is made of ceramic or polymer.)
Resistance thermometers and thermistors are generally used in two ways. First, they can be used as thermometers: By measuring the resistance, the temperature of the environment can be inferred. Second, they can be used in conjunction with Joule heating (also called self-heating): If a large current is running through the resistor, the resistor's temperature rises and therefore its resistance changes. Therefore, these components can be used in a circuit-protection role similar to fuses, or for feedback in circuits, or for many other purposes. In general, self-heating can turn a resistor into a nonlinear and hysteretic circuit element. For more details see Thermistor#Self-heating effects.
If the temperature T does not vary too much, a linear approximation is typically used:
The temperature coefficient is typically +3×10−3 K−1 to +6×10−3 K−1 for metals near room temperature. It is usually negative for semiconductors and insulators, with highly variable magnitude.[10]
Strain dependence
Main article: Strain gauge
Just as the resistance of a conductor depends upon temperature, the resistance of a conductor depends upon strain. By placing a conductor under tension (a form of stress
that leads to strain in the form of stretching of the conductor), the
length of the section of conductor under tension increases and its
cross-sectional area decreases. Both these effects contribute to
increasing the resistance of the strained section of conductor. Under
compression (strain in the opposite direction), the resistance of the
strained section of conductor decreases. See the discussion on strain gauges for details about devices constructed to take advantage of this effect.Light illumination dependence
Main articles: Photoresistor and Photoconductivity
Some resistors, particularly those made from semiconductors, exhibit photoconductivity, meaning that their resistance changes when light is shining on them. Therefore they are called photoresistors (or light dependent resistors). These are a common type of light detector.Superconductivity
Main article: Superconductivity
Superconductors
are materials that have exactly zero resistance and infinite
conductance, because they can have V=0 and I≠0. This also means there is
no joule heating, or in other words no dissipation
of electrical energy. Therefore, if superconductive wire is made into a
closed loop, current will keep flowing around the loop forever.
Similarly, if a power line were made of a superconductor, there would be
no transmission losses.
Unfortunately, superconductors are almost never used for power lines,
because they require cooling to temperatures near 4 K with liquid helium for most metallic superconductors like NbSn alloys, or cooling to temperatures near 77K with liquid nitrogen for the expensive, brittle and delicate ceramic high temperature superconductors. Nevertheless, there are many technological applications of superconductivity, including superconducting magnets.
No comments:
Post a Comment