An electrical network is an interconnection of electrical elements such as resistors, inductors, capacitors, transmission lines, voltage sources, current sources and switches. An electrical circuit
is a special type of network, one that has a closed loop giving a
return path for the current. Electrical networks that consist only of
sources (voltage or current), linear lumped elements (resistors,
capacitors, inductors), and linear distributed elements (transmission
lines) can be analyzed by algebraic and transform methods to determine DC response, AC response, and transient response.
A resistive circuit is a circuit containing only resistors and ideal current and voltage sources. Analysis of resistive circuits is less complicated than analysis of circuits containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC circuit.
A network that contains active electronic components is known as an electronic circuit. Such networks are generally nonlinear and require more complex design and analysis tools.
A passive network is a network which does not contain any active device.
Otherwise it is called as non-linear network.
To design any electrical circuit, either analog or digital, electrical engineers need to be able to predict the voltages and currents at all places within the circuit. Linear circuits, that is, circuits with the same input and output frequency, can be analyzed by hand using complex number theory. Other circuits can only be analyzed with specialized software programs or estimation techniques such as the piecewise-linear model.
Circuit simulation software, such as HSPICE, and languages such as VHDL-AMS and verilog-AMS allow engineers to design circuits without the time, cost and risk of error involved in building circuit prototypes.
Once the steady state solution is found, the operating points of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with Gaussian elimination.
A resistive circuit is a circuit containing only resistors and ideal current and voltage sources. Analysis of resistive circuits is less complicated than analysis of circuits containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC circuit.
A network that contains active electronic components is known as an electronic circuit. Such networks are generally nonlinear and require more complex design and analysis tools.
Contents |
Classification
By passivity
An active network is a network that consists of at least one active source like a voltage source or current sourceA passive network is a network which does not contain any active device.
By linearity
A linear circuit is a circuit which is composed entirely of independent sources, linear dependent sources and linear passive elements or a combination of these.Otherwise it is called as non-linear network.
Classification of sources
Sources can be classified as independent sources and dependent sourcesIndependent Sources
Ideal Independent Source maintains same voltage or current regardless of the other elements present in the circuit.Its value is either constant (DC) or sinusoidal (AC).Dependent Sources
Dependent Sources depend upon a particular element of the circuit for delivering the power or voltage or current depending upon the type of source it is.Electrical laws
A number of electrical laws apply to all electrical networks. These include:- Kirchhoff's current law: The sum of all currents entering a node is equal to the sum of all currents leaving the node.
- Kirchhoff's voltage law: The directed sum of the electrical potential differences around a loop must be zero.
- Ohm's law: The voltage across a resistor is equal to the product of the resistance and the current flowing through it.
- Norton's theorem: Any network of voltage or current sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor.
- Thévenin's theorem: Any network of voltage or current sources and resistors is electrically equivalent to a single voltage source in series with a single resistor.
Design methods
Linear Network Analysis | |
---|---|
Elements | |
|
|
Components | |
|
|
Series and parallel circuits | |
|
|
Impedance transforms | |
|
|
Generator theorems | Network theorems |
|
|
Network analysis methods | |
|
|
Two-port parameters | |
|
|
Circuit simulation software, such as HSPICE, and languages such as VHDL-AMS and verilog-AMS allow engineers to design circuits without the time, cost and risk of error involved in building circuit prototypes.
- See also Network analysis (electrical circuits).
Network simulation software
More complex circuits can be analyzed numerically with software such as SPICE or GNUCAP, or symbolically using software such as SapWin.Linearization around operating point
When faced with a new circuit, the software first tries to find a steady state solution, that is, one where all nodes conform to Kirchhoff's Current Law and the voltages across and through each element of the circuit conform to the voltage/current equations governing that element.Once the steady state solution is found, the operating points of each element in the circuit are known. For a small signal analysis, every non-linear element can be linearized around its operation point to obtain the small-signal estimate of the voltages and currents. This is an application of Ohm's Law. The resulting linear circuit matrix can be solved with Gaussian elimination.
No comments:
Post a Comment