Antenna gain
From Wikipedia, the free encyclopedia
(Redirected from Absolute gain (physics))
In electromagnetics, an antenna's power gain or simply gain is a key performance figure which combines the antenna's directivity and electrical efficiency. As a transmitting antenna, the figure describes how well the antenna converts input power into radio waves
headed in a specified direction. As a receiving antenna, the figure
describes how well the antenna converts radio waves arriving from a
specified direction into electrical power. When no direction is
specified, "gain" is understood to refer to the peak value of the gain. A
plot of the gain as a function of direction is called the radiation pattern.Antenna gain is usually defined as the ratio of the power produced by the antenna from a far-field source on the antenna's beam axis to the power produced by a hypothetical lossless isotropic antenna, which is equally sensitive to signals from all directions. Usually this ratio is expressed in decibels, and these units are referred to as "decibels-isotropic" (dBi). An alternate definition compares the antenna to the power received by a lossless half-wave dipole antenna, in which case the units are written as dBd. Since a lossless dipole antenna has a gain of 2.15 dBi, the relation between these units is: gain in dBd = gain in dBi - 2.15 dB . For a given frequency the antenna's effective area is proportional to the power gain. An antenna's effective length is proportional to the square root of the antenna's gain for a particular frequency and radiation resistance. Due to reciprocity, the gain of any antenna when receiving is equal to its gain when transmitting.
Directive gain or directivity is a different measure which does not take an antenna's electrical efficiency into account. This term is sometimes more relevant in the case of a receiving antenna where one is concerned mainly with the ability of an antenna to receive signals from one direction while rejecting interfering signals coming from a different direction.
Contents |
Power gain
Power gain (or simply gain) is a unitless measure that combines an antenna's efficiency Eantenna and directivity D:


The power gain, on the other hand, signifies the ratio of radiated power in a given direction relative to that of an isotropic radiator which is radiating the total amount of electrical power received by the antenna in question. This is in contrast to the directive gain which ignores any reduction in efficiency. If only a certain portion of the electrical power received from the transmitter is actually radiated by the antenna (its efficiency) the directive gain compares the power radiated in a given direction to that reduced power, ignoring the inefficiency. By instead comparing the radiated power in a given direction to the actual power that the antenna receives from the transmitter, the power gain takes into account that poorer efficiency, making it a more useful figure of merit for the ability of a transmitter in sending a radio wave toward a receiver.
The radiation intensity


Figures used for antenna gain
Published figures for antenna gain are almost always expressed in decibels (dB), a logarithmic scale. From the gain factor G, one finds the gain in decibels as:When actual measurements of an antenna's gain are made by a laboratory, the field strength of the test antenna is measured when supplied with, say, 1 watt of transmitter power, at a certain distance. That field strength is compared to the field strength found using a so-called reference antenna at the same distance receiving the same power in order to determine the gain of the antenna under test. That ratio would be equal to G if the reference antenna were an isotropic radiator.
However a true isotropic radiator cannot be built, so in practice a different antenna is used. This will often be a half-wave dipole, a very well understood and repeatable antenna that can be easily built for any frequency. The directive gain of a half-wave dipole is known to be 1.64 and it can be made nearly 100% efficient. Since the gain has been measured with respect to this reference antenna, the difference in the gain of the test antenna is often compared to that of the dipole. The "gain relative to a dipole" is thus often quoted and is denoted using "dBd" instead of "dBi" to avoid confusion. Therefore in terms of the true gain (relative to an isotropic radiator) G, this figure for the gain is given by:
Note that when considering an antenna's directional pattern, "gain with respect to a dipole" does not imply a comparison of that antenna's gain in each direction to a dipole's gain in that direction. Rather, it is a comparison between the antenna's gain in each direction to the peak gain of the dipole (1.64). In any direction, therefore, such numbers are 2.15 dB smaller than the gain expressed in dBi.
Partial Gain
Partial gain is calculated as power gain, but for a particular polarization. It is defined as the part of the radiation intensity


As a result of this definition, we can conclude that the total gain of an antenna is the sum of partial gains for any two orthogonal polarizations.
Example calculation
Suppose a lossless antenna has a radiation pattern given by:Solution:
First we find the peak radiation intensity of this antenna:
.
.
Total radiated power
Total radiated power is a measurement of antenna gain with or without the power absorption effects (loss) that may be caused by objects in the proximity of the antenna. TRP is measured in the lab as radiated power compared to an Isotropic Antenna. TRP can also be measured while in the close proximity of power absorbing loses such as the body and hand of the Mobile Device Under Test User.[1]The TRP can be used to determine Body Loss (BoL). The Body Loss is considered as the ratio of TRP measured in the presence of losses and TRP measured while in open space.
No comments:
Post a Comment